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Abstract. We verify the weak implies strong conjecture for 4-dimensional finitely gener-
ated algebras over a field of prime characteristic p > 5 which has infinite transcendence
degree over Fp.

1. Introduction

Let (R,m, k) be an excellent commutative Noetherian local ring of prime characteristic p >
0. Tight closure theory, introduced and developed by Hochster and Huneke in [HH89, HH90,
HH91, HH93, HH94a, HH94b], is a subject central to prime characteristic commutative
algebra, important to our understanding of characteristic 0 singularities, and a guiding force
in the development of mixed characteristic singularities.

Let N ⊆ M be R-modules and let N∗M denote the tight closure of N inside of M , see
[HH90] for a precise definition of tight closure. The ring R is weakly F -regular if N∗M = N
for all finitely generated modules N ⊆ M and R is strongly F -regular if N∗M = N for all
R-modules N ⊆M . The weak implies strong conjecture asserts that every weakly F -regular
ring is strongly F -regular. The most notable cases that the weak implies strong conjecture
has been proven for are for standard graded algebras over a field, [LS99], and all rings of
Krull dimension at most 3, [Wil95].

Outside of the graded scenario, developments around the weak implies strong conjecture
depend upon the behavior of the anticanonical algebra of R. An unpublished result of Singh
asserts that the weak implies strong conjecture holds for the class of rings whose anticanonical
algebra is Noetherian1, see [CEMS18b, Corollary 5.9]. Williams’ proof of the weak implies
strong conjecture in dimension 3 implicitly utilizes that the anticanonical algebra of a 3-
dimensional weakly F -regular ring is Noetherian on the punctured spectrum, an assertion
that relies on the algebraic-geometric methods of [Lip69] and [Smi97].

Our methods show that every 4-dimensional weakly F -regular ring is strongly F -regular,
provided its anticanonical algebra is Noetherian when localized at a non-maximal prime ideal.
Therefore a further relationship between tight closure and prime characteristic birational
geometry is desired to progress the weak implies strong conjecture. This is indeed the
scenario in 4-dimensional rings. Recent developments in the prime characteristic minimal
model program, [DW19], allow us to conclude that all divisorial blowups rings, including

Polstra was supported in part by NSF Grant DMS #101890 during the preparation of this article.
1It is conjectured that any divisorial blowup ring, including the anticanonical algebra, of any strongly F -
regular ring is Noetherian.
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the anticanonical algebra, are Noetherian away from maximal ideals for large classes of
4-dimensional weakly F -regular rings.

Theorem A. Let R be a 4-dimensional finitely generated algebra over a field of prime
characteristic p > 5 which has infinite transcendence degree over Fp. If R is weakly F -
regular then R is strongly F -regular.

The weak implies strong conjecture will be understood as a problem of understanding
when an element of a non-injective direct limit system is mapped to 0 inside the direct
limit. To this end, we introduce the notion of a local cohomology bound in Section 2. If M
is an R-module and x = x1, . . . , x` a sequence of elements then we may identify the local
cohomology module H i

(x)(M) as a direct limit of Koszul cohomologies

H i
(x)(M) ∼= lim−→

t1≤t2

(
H i(xt11 , . . . , xt1` ;M)

αi
t1,t2−−−→ H i(xt21 , . . . , xt2` ;M)

)
.

The ith local cohomology bound of M with respect to the sequence x is bounded by an
integer k if for every t, if η ∈ H i(xt1, . . . , xt`;M) represents the 0-element of H i

(x)(M) then
αit,t+k(η) = 0. Understanding when a module has bounded local cohomology bounds with
respect to a sequence of elements is an interesting, challenging, and worth-while venture.

2. Local Cohomology Bounds

We do not present the basic theory of local cohomology bounds in full generality. We
only present specific aspects needed in later sections. The interested reader should consult
[AP21] for a thorough introduction to the theory of local cohomology bounds.

2.1. Definition of local cohomology bound. Suppose M is a module over a ring R and
y = y2, y3, y4

2 a sequence of elements. Then for each integer t ∈ N we let yt = yt2, y
t
3, y

t
4 and

for each pair of integers t1 ≤ t2 let α̃•M ;y;t1;t2 denote the natural map of Koszul cocomplexes

K•(yt1 ;M)
α̃•M ;y;t1;t2−−−−−→ K•(yt2 ;M).

2We begin the sequence at y2 instead of y1 for ease of referencing this material in Section 3 and Section 4.
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More specifically, α̃•M ;y;t1;t2 is the following map of Koszul cocomplexes:

K•(yt1 ;M) :

α̃•M ;y;t1;t2

��

0 // M

α̃0
M ;y;t1;t2

��

[
yt1

4
yt1

3
yt1

2

]
// M⊕3

α̃1
M ;y;t1;t2

��

[
yt1

3 −yt1
4 0

−yt1
2 0 yt1

4
0 yt1

2 −yt1
3

]
// M⊕3

α̃2
M ;y;t1;t2

��

[
yt1

2
yt1

3
yt1

4

]
// M //

α̃3
M ;y;t1;t2

��

0

K•(yt2 ;M) : 0 // M [
yt2

4
yt2

3
yt2

2

] // M⊕3 [
yt2

3 −yt2
4 0

−yt2
2 0 yt2

4
0 yt2

2 −yt2
3

]// M⊕3 [
yt1

2
yt1

3
yt1

4

] // M // 0

(2.1)

Where

• α̃0
M ;y;t1;t2 = idM ;

• α̃1
M ;y;t1;t2 =

[
yt2−t1

4 0 0
0 yt2−t1

3 0
0 0 yt2−t1

2

] • α̃2
M ;y;t1;t2 =

[
(y3y4)t2−t1 0 0

0 (y2y4)t2−t1 0
0 0 (y2y3)t2−t1

]
• α̃3

M ;y;t1;t2 = ·(y2y3y4)t2−t1

We let αjM ;y;t1;t2 denote the induced map of Koszul cohomologies

Hj(yt1 ;M)
αj

M ;y;t1;t2−−−−−→ Hj(yt2 ;M).

In particular,

lim−→
t1≤t2

Hj(yt1 ;M)
αj

M ;y;t1;t2−−−−−→ Hj(yt2 ;M)
 ∼= Hj

(y)(M)

by [BH93, Theorem 3.5.6].
For each 0 ≤ j ≤ 3 let αjM ;y;t;∞ be the natural map

Hj(yt;M)
αj

M ;y;t;∞
−−−−−→ Hj

(y)(M).

An element η ∈ Hj(yt;M) belongs to Ker(αjM ;y;t;∞) if and only if there exists some k ≥ 0 so
that η ∈ Ker(αjM ;y;t;t+k). If η ∈ Ker(αjM ;y;t;∞) we let

εjy,t(η) = min{k | η ∈ Ker(αjM ;y;t;t+k)}.

Definition 2.1. Let R be a ring, y = y2, y3, y4 a sequence of elements in R, and M an
R-module. The jth local cohomology bound of M with respect to the sequence of elements
y is

lcbj(y;M) = sup{εjy,t(η) | η ∈ Ker(αjM ;y;t;∞) for some t} ∈ N ∪ {∞}.
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Observe that if M is an R-module and y = y2, y3, y4 a sequence of elements, then
lcbj(y;M) ≤ N < ∞ simply implies that if η ∈ Hj(yt;M) represents the 0-element in
the direct limit

lim−→
t1≤t2

Hj(yt1 ;M)
αj

M ;y;t1;t2−−−−−→ Hj(yt2 ;M)
 ∼= Hj

(y)(M)

then αjM ;y;t;t+N(η) is the 0-element of the Koszul cohomology group Hj(yt+N ;M). There-
fore finite local cohomology bounds correspond to a uniform bound of annihilation of zero
elements in a choice of direct limit system defining a local cohomology module.

2.2. Some basic properties of local cohomology bounds.
Lemma 2.2. Let R be a commutative Noetherian ring, M an R-module, and y = y2, y3, y4
a sequence of elements, then lcbj(yt;M) ≤ lcbj(y;M). Furthermore, lcbj(y;M) ≤ tm for
some integers t,m if and only if lcbj(yt;M) ≤ m.

Proof. One only has to observe that αjM ;yt;k,k+m = αjM ;y;tk,tk+tm. �

Proposition 2.3. Let R be a commutative Noetherian ring and M,N modules over R.
Suppose y = y2, y3, y4 is a sequence of elements so that (y2, y3, y4)M = 0 and (y2, y3)N = 0.
Then

(1) αjM ;y;t,t+k = 0 for all t, k ≥ 1, and 1 ≤ j ≤ 3;
(2) αjN ;y;t,t+k = 0 for all t, k ≥ 1, and 2 ≤ j ≤ 3.

In particular, lcbj(y;M) ≤ 1 for 1 ≤ j ≤ 3 and lcbj(y;N) ≤ 1 for 2 ≤ j ≤ 3.

Proof. Recall that αjM ;y;t,t+k is the map of Koszul cohomologies induced from the map
α̃•M ;y;t,t+k on Koszul cocomplexes. One can consult the diagram of (2.1) to observe that
α̃jM ;y;t,t+k is the 0-map for all t, k ≥ 1, and j ≥ 1. The second assertion follows by an
identical argument. �

Proposition 2.4. Let (R,m, k) be a local ring and
0→M1 →M2 →M3 → 0

a short exact sequence of finitely generated R-modules. Let y = y2, y3, y4 a sequence of
elements of R. If (y2, y3)M3 = 0 then

lcb3(y2, y3, y4;M1) ≤ lcb3(y2, y3, y4;M2) + 1.
Proof. Consider the following commutative diagram, whose middle row is exact:

H3(yt;M1) H3(yt;M2)

H2(yt+k;M3) H3(yt+k;M1) H3(yt+k;M2)

H2(yt+k+1;M3) H3(yt+k+1;M1)

α3
M1;y;t;t+k α3

M2;y;t;t+k

α2
M3;y;t+k;t+k+1 α3

M1;y;t+k;t+k+1
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By Proposition 2.3 the map α2
M1;y;t+k;t+k+1 is the 0-map. A straightforward diagram chase of

the above diagram, which follows an element η ∈ Ker(α3
M2;y;t;t+k′) for some k′, shows that η ∈

Ker(α3
M2;y;t;t+k+1) whenever k ≥ lcb3(y;M3). In particular, lcb3(y;M2) ≤ lcb3(y;M3)+1. �

Proposition 2.5. Let R be a commutative Noetherian ring, 0 → M1 → M2 → M3 → 0 a
short exact sequence of R-modules, and y = y2, y3, y4 a sequence of elements in R.

(1) If y is a regular sequence on M2 then lcbj(y;M3) = lcbj+1(y;M1) for all 0 ≤ j ≤ 2.
(2) If y is a regular sequence on M3 then lcbj(y;M1) = lcbj(y;M2) for all 0 ≤ j ≤ 3.

Proof. The proofs of (1) and (2) are similar and for the sake of brevity we only provide the
proof of (1). The sequence y is a regular sequence on M2 and so Hj(xt;M2) = 0 whenever
j ≤ 2. Therefore if 0 ≤ j ≤ 1 there are commutative diagrams

Hj(yt;M3) Hj+1(yt;M1)

Hj(yt+k;M3) Hj+1(yt+k;M1)

∼=

αj+1
M3;y;t;t+k

αj
M1;y;t;t+k

∼=

whose horizontal arrows are isomorphisms. It easily follows that lcbj(y;M3) = lcbj+1(y;M1)
whenever 0 ≤ j ≤ 1. To verify that lcb2(y;M3) = lcb3(y;M1) consider the following com-
mutative diagrams:

0 H2(yt;M3) H3(yt;M1) H3(yt;M2)

0 H2(yt+k;M3) H3(yt+k;M1) H3(yt+k;M2)

δt

α2
M3;y;t;t+k

it

α3
M1;y;t;t+k α3

M2;y;t;t+k

δt+k it+k

A simple diagram chase and utilizing the injectivity of the maps δt, δt+k, and α3
M2;y;t,t+k imply

that lcb2(y;M3) = lcb3(y;M1). �

3. Annihilation of Ext-modules and bounded local cohomology bounds

We are focused on the weak implies strong conjecture and every weakly F -regular ring
is a normal Cohen-Macaulay domain, [HH90, Theorem 4.9 and Lemma 5.9]. Therefore
we assume throughout this section, and next, that (R,m, k) is a normal Cohen-Macaulay
domain. We further assume that R is the homomorphic image of a regular local ring S. We
write R ∼= S/I and h will always denote the height of I, equivalently the codimension of R.
In particular, the dimension of S is h+ 4.

3.1. Annihilation of Ext-modules. The following proposition is our initial step toward
providing linearly bounded local cohomology bounds needed to prove Theorem A.
Proposition 3.1. Let (R,m, k) be an excellent local normal Cohen-Macaulay domain of
Krull dimension 4. Let K ⊆ R be an ideal of pure height 1 of R so that

(1) The inclusion of ideals Ki ⊆ K(i) is an equality on the punctured spectrum of R;
(2) The analytic spread of KRP is no more than ht(P ) − 1 for all non-maximal prime

ideals P of height at least 2;
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(3) For each non-maximal prime ideal P of Spec(R) the ideal KRP has reduction number
1 with respect to any reduction.

Then there exists an m-primary ideal a so that
ai Exth+3

S (R/Ki, S) = 0
for all i ∈ N.
Proof. Choose an element x1 ∈ K. The principal locus of K is an open subset of Spec(R)
and K localizes to a principal ideal at all height 2 primes of R by assumption. Indeed,
an ideal of a normal domain has analytic spread 1 if and only if the ideal is principal. In
particular, we can choose a parameter sequence x2, x3 of R/x1R so that KRx2 and KRx3

are principal ideals in their respective localizations. Even further, we replace x2 and x3 by
xt2 and xt3 respectively and may assume that x2K ⊆ r2R and x3K ⊆ r3R for some elements
r2, r3 ∈ K. Consider the short exact sequences

0→ Ki

(ri2) →
R

(ri2) →
R

Ki
→ 0

and
0→ Ki

(ri3) →
R

(ri3) →
R

Ki
→ 0.

Observe that xi2 annihilates Ki/(ri2) and xi3 annihilates Ki/(ri3). Therefore
Exth+3

S (R/Ki, S) ∼= Exth+2
S (Ki/(ri2), S) ∼= Exth+2

S (Ki/(ri3), S)
and we find that the ideal (xi1, xi2, xi3) annihilates Exth+3

S (R/Ki, S). To complete the proof
of the theorem we aim to find a parameter element x4 of R/(x1, x2, x3) so that xi4 annihilates
Exth+3

S (R/Ki, S) for all i.
Let Λ = {P1, . . . , Pm} be the prime components of the height 3 parameter ideal (x1, x2, x3).

If necessary, enlarge Λ so that every component of K is contained in some prime ideal of Λ
and let W = R \ ⋃P∈Λ P .
Claim 3.2. There exist elements a, b ∈ K such that

(1) (a, b)RW forms a reduction of KRW ;
(2) the element a generates K at its components;
(3) if K ′ is the unique ideal of pure height 1 whose components are disjoint from K and

is such that (a) = K ∩K ′ then b avoids all components of K ′.
Proof of Claim 3.2. We are assuming the ideal K has analytic spread at most 2 at each of
the localizations RP as P varies among the prime ideals in Λ. So for each 1 ≤ i ≤ m there
exists ai, bi ∈ K such that (ai, bi)RPi

forms a reduction of KRPi
. For each 1 ≤ i ≤ m choose

ri ∈
⋂
P∈Λ−{Pi} P −Pi and set a′ = ∑

riai and b′ = ∑
ribi. We claim (a′, b′)RW`

is a reduction
of KR`. By [HS06, Proposition 8.1.1] it is enough to check (a′, b′) forms a reduction of K
at each of the localizations RPi

for 1 ≤ i ≤ m. By [HS06, Proposition 8.2.4] it is enough
to check that the the fiber cone RP/PRP ⊗ R[Kt] ∼=

⊕
KnRPi

/PiK
nRPi

is finite over the
subalgebra spanned by ((a′, b′)RPi

, PiK)/PiK. But a′ ≡ riai mod PiK, b′ ≡ ribi mod PiK,
ri is a unit of RPi

, and therefore (a′, b′)RW`
does indeed form a reduction of KRW`

by a
second application of [HS06, Proposition 8.2.4].
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Now consider the set of primes Γ = {Q1, . . . , Qn} which are the minimal components of
K. The purpose of enlarging the set of height ` primes in the statement of the claim was to
insure that each Qj ∈ Γ is a prime ideal of the localization RW`

. In particular, (a′, b′)RQi

forms a reduction of KRQi
for each 1 ≤ i ≤ n. But RQi

is a discrete valuation ring and
therefore for each 1 ≤ i ≤ ` either KRQi

= (a′)RQi
or KRQi

= (b′)RQi
. Without loss of

generality we assume that KRQi
= (a′)RQi

for at least one value of i and relabel the primes
in Γ so that KRQi

= (a′)RQi
for each 1 ≤ i ≤ j and KRQi

6= (a′)RQi
for each j + 1 ≤ i ≤ n.

Choose r ∈ Q1∩· · ·∩Qj−
⋃n
i=j+1Qi and consider the element a′+rb′. We claim that a′+rb′

generates KRQi
for each 1 ≤ i ≤ n. First consider a localization at a prime Qi ∈ Γ with

1 ≤ i ≤ j. Then (a′, b′)RQi
= (a′)RQi

by assumption and so (b′)RQi
⊆ (a′)RQi

. Because
r ∈ Qi there is a strict containment of principal ideal (rb′)RQi

( (a′)RQi
and it follows that

(a′)RQi
= (a′+rb′)RQi

. Now consider a localization RQi
with j+1 ≤ i ≤ n. We are assuming

that a′ does not generate KRQi
and therefore (a′)RQi

( (b′)RQi
= KRQi

. Moreover, r is a
unit of RQi

and therefore (b′)RQi
= (a′ + rb′)RQi

.
Let a = a′+rb′. Then (a, b′)RW`

= (a′, b′)RW`
forms a reduction of KRW`

and the element
a generates K at each of its minimal components as desired. Suppose as an ideal of R the
principal ideal (a) has decomposition (a) = K ∩K ′ ∩K ′′ so that

(1) K,K ′, K ′′ are pure height 1 ideals whose components are disjoint from one another;
(2) the components of K ′ are height 1 prime ideals which do not contain b;
(3) the components of K ′′ are height 1 prime ideals which do contain b.

We take K ′ or K ′′ to be R if no such components of (a) exist. If K ′′ = R then we let b = b′

and the elements a, b satisfy the conclusions of the claim. If K ′′ 6= R then first observe
that, because (a, b′)RW`

forms a reduction of KRW`
and a, b′ ∈ K ′′, we must have that

(a)RW`
= (K ∩K ′)RW`

. Choose an element r ∈ K ∩K ′ which avoids all components in K ′′
and consider the element b = b′+r. Then (a, b)RW`

= (a, b′)RW`
forms a reduction of KRW`

.
Moreover, the element b avoids all minimal components of K ′ and K ′′ by construction. �

We are assuming that KRW has reduction number 1 with respect to the reduction (a, b)RW

provided above, i.e. (a, b)KRW = K2RW . The following R-modules localize to 0 over RW :
(1) K2/(a, b)K;
(2) Exth+3

S (R/(a, b)K,S);
(3) Exth+3

S (R/K, S).
Therefore there exists a parameter element x4 of R/(x1, x2, x3) so that

(1) x4K
2 ⊆ (a, b)K;

(2) x4 Exth+3
S (R/(a, b)K,S) = 0;

(3) x4 Exth+3
S (R/K, S) = 0.

Even further, as x4K
2 ⊆ (a, b)K, observe that xi−1

4 Ki ⊆ (a, b)i−1K for all i ∈ N. Consider
the following short exact sequence:

0→ Ki

(a, b)i−1K
→ R

(a, b)i−1K
→ R

Ki
→ 0.
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The left most term is annihilated by xi−1
4 . Thus, in order to show xi4 annihilates Exth+3

S (R/Ki, S)
it suffices to show that x4 ∈

⋂
i∈N AnnR(Exth+3

S (R/(a, b)i−1K,S)). To this end we present a
claim:

Claim 3.3. For every integer i there is a short exact sequence

0→ R

abiR
→ R

a(a, b)i−1K
⊕ R

biK
→ R

(a, b)iK → 0.

Proof of Claim 3.3. For any ideals I, J there is a short exact sequence

0→ R

I ∩ J
→ R

I
⊕ R

J
→ R

I + J
→ 0.

Thus to prove the claim we need only to observe a(a, b)i−1K ∩ biK = abiR. Clearly abi ∈
a(a, b)i−1K ∩ biKR. On the other hand, an element of a(a, b)i−1K ∩ biK is of the form
bir where r ∈ K and bir ∈ a(a, b)i−1K. To show that bir ∈ abiR we must show that
r ∈ aR = K ∩K ′. The element r ∈ K by assumption. Localizing at a component P of K ′,
a component which does not contain b by design, we find that rbi ∈ a(a, b)i−1RP = aRP and
thus r ∈ aR as desired. �

Claim 3.3 provides to us isomorphisms
Exth+3

S (R/(a, b)iK,S) ∼= Exth+3
S (R/a(a, b)i−1K,S)⊕ Exth+3

S (R/biK,S).(3.1)
There are short exact sequences

0→ R

(a, b)i−1K
·a−→ R

a(a, b)i−1K
→ R

aR
→ 0

and
0→ R

K
·bi

−→ R

biK
→ R

biR
→ 0.

Therefore the isomorphisms of (3.1) can be further rewritten as
Exth+3

S (R/(a, b)iK,S) ∼= Exth+3
S (R/(a, b)i−1K,S)⊕ Exth+3

S (R/K, S).
Inductively, we find that

Exth+3
S (R/(a, b)iK,S) ∼=

i⊕
Exth+3

S (R/K, S)

and we conclude that x4 annihilates Exth+3
S (R/(a, b)iK,S) as desired. �

Suppose that I ⊆ R is an unmixed ideal. The Rees algebra of I is the standard graded
R-algebra R[It] = ⊕

N≥0 I
N , the associated graded ring of I is GrI(R) = R[It]⊗R R/I, and

the symbolic Rees algebra of I is RI = ⊕
N≥0 I

(N). The inclusion of N-graded R-algebras
R[It] ⊆ RI is an equality if and only if ⋃N∈N Ass(R/IN) agrees with the set of minimal
prime ideals of I. The R-algebra RI is Noetherian if and only if there exists an m so that
RI(m) is standard graded, i.e. I(m)N = I(mN) for all N .

Suppose that RI is Noetherian and m is chosen so that RI(m) is standard graded. Let
`(I(m)) = dimRI(m) ⊗R R/m, the analytic spread of I(m). If m′ is another integer so that
RI(m′) is standard graded then I(m)m′ = I(m′)m = I(mm′) and so `(I(m)) = `(I(mm′)) = `(I(m)).
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We say that the associated graded rings of RI have negative a-invariants if the graded local
cohomology modules H`

R+
I

(GrI(m)(R)) are supported only in negative degrees where ` =
`(I(m)) is the analytic spread of a choice of symbolic power of I for which R[I(m)t] = RI(m) .

Suppose that R is a normal domain, J1 ⊂ R is a choice of canonical ideal, and x1 ∈ J1
is a choice of generic generator. Then we can write (x1) = J1 ∩K1 where K1 is an ideal of
pure height 1 whose components are disjoint from J1. Then K1 is an anticanonical ideal of
R and we refer to the symbolic Rees algebra RK1 as the anticanonical algebra of R.

Theorem 3.4. Let (R,m, k) be an excellent local normal Cohen-Macaulay domain of Krull
dimension 4. Suppose that the anticanonical algebra of R is Noetherian on the punctured
spectrum of R so that its associated graded rings have negative a-invariant. Let J1 ⊆ R be
a choice of canonical ideal of R. Then there exists an integer m ∈ N and m-primary ideal
a ⊆ R so that J (m)

1 is principal in codimension 2 and

ai Exth+2
S (Exth+1

S (R/Jmi+1
1 , S), S) = 0

for every integer i ∈ N.

Proof. Choose a generic generator x1 ∈ J1 and write (x1) = J1 ∩ K1 where K1 is an anti-
canonical ideal of R whose components are disjoint from the components of J1. A theorem
of Brodmann, [Bro79], asserts that Γ := ⋃∞Ass(R/Kn

1 ) is a finite set, c.f. [HS15]. Let
P1, . . . , Pt ∈ Γ be the finitely many non-maximal primes of Γ which are not of height 1. If P
is a non-maximal ideal of R not belonging to {P1, . . . , Pt} then Ki

1RP = K
(i)
1 RP for all i. If

Pj ∈ {P1, . . . , Pt} then our assumption that the anticanonical algebra is Noetherian on the
punctured spectrum implies that there exists an integer mj so that K(mj)i

1 RP = K
(mji)
1 RP

and that the analytic spread of K(mji)
1 RP is does not exceed ht(P ) − 1, see [KR86] and

[CHS10, Theorem 1.5].
Let m be a common multiple of m1, . . . ,mt. Then the inclusion of ideals K(m)i

1 ⊆ K
(mi)
1

becomes an equality when localized at any non-maximal prime ideal of R. The ideal K(m)
1

is principal in codimension 2 since its analytic spread in codimension 2 is 1. As J (m)
1 is the

inverse element of K(m)
1 when viewed as elements of the divisor class group of R, J (m)

1 is
principal in codimension 2 as well. Even further, because we are assuming the a-invariant
of the associated graded ring of the anticanonical algebra of RP is negative for each non-
maximal prime ideal R, we can replace m by a multiple of itself and assume that the ideal
K

(m)
1 RPj

has reduction number 1 with respect to any reduction, see [Hoa93, Theorem 2.1].
Let K = K

(m)
1 and x = xm1 .

Claim 3.5. For each integer i

Exth+2
S (Exth+1

S (R/Jmi+1
1 , S), S) ∼= Exth+3

S (R/Ki, S).

Proof of Claim 3.5. For each integer i there is short exact sequence

0→ Jmi+1
1

xmi+1
1 J1

→ R

xmi+1
1 J1

→ R

Jmi+1
1

→ 0.
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The ideal xmi+1
1 J1 is a canonical ideal of R. Therefore

Exth+1
S (R/xmi+1

1 , S) ∼= R/xmi+1
1 J1

and there are left exact sequences

0→ Exth+1
S (R/Jmi+1

1 , S)→ R

xmi+1
1 J1

→ Exth+1
S (Jmi+1

1 /xmi+1
1 J1, S).

Therefore Exth+1
S (R/Jmi+1

1 , S) ∼= Li/x
mi+1
1 J1 for some ideal Li ⊆ R. Moreover, R/Li ⊆

Exth+1
S (Jmi+1

1 /xmi+1
1 J1, S). Because Exth+1

S (Jmi+1
1 /xmi+1

1 J1, S) is an (S2)-module over its
support it follows that R/Li is an (S1)-module over its support. Hence Li, as an ideal of R,
is unmixed of height 1. Moreover, every component of Li is a component of x1R. Localizing
at a component of J1 we see that Li agrees with x1R and localizing at a component of K1
we see that Li agrees with xmi+1

1 . Therefore Li agrees with the unmixed ideal x1K
(mi)
1 and

so
Exth+1

S (R/Jmi+1
1 , S) ∼= x1K

(mi)
1 /xmi+1

1 J1.

If we divide by x1 we find that

x1K
(mi)
1 /xmi+1

1 J1 ∼= K
(mi)
1 /xmi1 J1 = K(i)/xiJ1.

Now we consider the short exact sequences

0→ K(i)/xiJ1 → R/xiJ1 → R/K(i) → 0.

The cyclic R-module R/xiJ1 is Cohen-Macaulay of dimension 3 and therefore

Exth+2
S (K(i)/xiJ1, S) ∼= Exth+3

S (R/K(i), S).

To complete the proof of the claim we consider the short exact sequences

0→ K(i)

Ki
→ R

Ki
→ R

K(i) → 0.

The inclusion of ideals Ki ⊆ K(i) are an equality on the punctured spectrum of R and hence

Exth+3
S (R/K(i), S) ∼= Exth+3

S (R/Ki, S).

�

To prove the theorem we aim to find an m-primary ideal so that

ai Exth+3
S (R/Ki, S) = 0

for all i. Such an annihilation property is the content of Proposition 3.1. �
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3.2. Existence of bounded local cohomology bounds. Let I ⊆ R be an ideal of
pure height 1 and (F•, ∂•) be an S-free resolution of R/I and G• an S-free resolution of
ωR/I ∼= Exth+1

S (R/I, S). Let (−)∗ = HomS(−, S). Then H i(F ∗• ) = ExtiS(R/I, S) = 0 for
all i ≤ h and if we let F̃ ∗• be the truncation of F ∗• at the h + 1st spot then F̃ ∗• resolves
Coker(∂∗h+1). There is a natural inclusion of S-modules Exth+1

S (R/I, S) ⊆ Coker(∂∗h+1).
This inclusion produces a map of complex to cocomplex G• → F̃ ∗• and thus a natural map
R/I → Exth+1

S (Exth+1
S (R/I, S), S) obtained from applying HomS(−, S) to G• → F̃ ∗• . The

map R/I → Exth+1
S (Exth+1

S (R/I, S), S) is injective and is an isomorphism in the Cohen-
Macaulay locus of R/I.

Theorem 3.6. Let (R,m, k) be an excellent local normal Cohen-Macaulay domain of Krull
dimension 4. Suppose that the anticanonical algebra of R is Noetherian on the punctured
spectrum of R so that its associated graded rings have negative a-invariant. Let J1 ⊆ R be
a choice of canonical ideal of R and a as in Theorem 3.4. There exists an integer m and
x1 ∈ J1, such that if x2, x3, x4 ∈ a are parameters on R/x1R chosen so that

(1) x2J1 ⊆ a2R for some a2 ∈ J1;
(2) x3J

(m)
1 ⊆ a3R for some a3 ∈ J (m)

1 .
Then for each natural number i there exists an integer ` such that

lcb3(x`,2 x`3, x4;R/J (mi+1)
1 ) ≤ i+ 1.

Proof. Let m and a be as in Theorem 3.4. Because J1 is principal in codimension 1 and J (m)
1

is principal in codimension 2 we can choose a parameter sequence x2, x3, x4 ∈ a on R/x1R
so that

(1) x2J1 ⊆ a2R for some a2 ∈ J1;
(2) x3J

(m)
1 ⊆ a3R for some a3 ∈ J (m)

1 .
For each integer i there is a short exact sequence of the form

0→ R/J
(mi+1)
1 → Exth+1

S (Exth+1
S (R/J (mi+1)

1 , S), S)→ Ci → 0.
Inverting the element x2 or x3 has the effect of making the ideal J1 principal. Therefore the
first map in the above short exact sequence is an isomorphism whenever x2 or x3 is inverted
and so there exists an integer ` so that x`2, x`3 annihilates Ci. By (3) of Proposition 2.4 we
have that

lcb3(x`2, x`3, x4;R/J (mi+1)
1 ) ≤ lcb3(x`2, x`3, x4; Exth+1

S (Exth+1
S (R/J (mi+1)

1 , S), S)) + 1.

Our aim is to show lcb3(x`2, x`3, x4; Exth+1
S (Exth+1

S (R/J (mi+1)
1 , S), S)) ≤ i. By Lemma 2.2 it

suffices to prove lcb3(x`i2 , x`i3 , xi4; Exth+1
S (Exth+1

S (R/J (mi+1)
1 , S), S)) ≤ 1.

Let (F•, ∂•) be the minimal free S-resolution of Exth+1
S (R/J (mi+1), S) and let (−)∗ =

HomR(−, S). The module Exth+1
S (R/J (mi+1), S) has depth at least 2 and so Fh+3 = Fh+4 = 0.

It follows that there are short exact sequences

0→ Im(∂∗h+2)→ F ∗h+2 → Exth+2
S (Exth+1

S (R/Jmi+1, S), S)→ 0
and

0→ Exth+1
S (Exth+1

S (R/Jmi+1, S), S)→ Coker(∂∗h+1)→ Im(∂∗h+2)→ 0.
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The S-module Coker(∂∗h+1) has projective dimension h+ 1 and is annihilated by the height
h+ 1 ideal Jmi+1. By a simple prime avoidance argument we may lift x2, x3, x4 to elements
of S so that x2, x3, x4 forms a regular sequence on Coker(∂∗h+1) and the free S-module F ∗h+2.
By two applications of (1) of Proposition 2.5 applied to the two above short exact sequences

lcb3(x`i2 , x`i3 , xi4; Exth+1
S (Exth+1

S (R/Jmi+1
1 , S), S)) = lcb2(x`i2 , x`i3 , xi4; Im(∂∗h+2))

= lcb1(x`i2 , x`i3 , xi4; Exth+2
S (Exth+1

S (R/Jmi+1
1 , S), S)).

By Theorem 3.4 we have that

(x`i2 , x`i3 , xi4) Exth+2
S (Exth+1

S (R/Jmi+1
1 , S), S) = 0.

Therefore
lcb1(x`i2 , x`i3 , xi4; Exth+2

S (Exth+1
S (R/Jmi+1

1 , S), S)) = 1
by (1) of Proposition 2.3. �

4. Equality of test ideals

If N ⊆ M are R-modules then the finitistic tight closure of N inside M is the union of
(N ∩M ′)∗M ′ where M ′ ⊆M runs through all finitely generated submodules of M . Let ER(k)
be the injective hull of the residue field of (R,m, k). Then R is strongly F -regular if and only
if 0 = 0∗ER(k), [HH90, Proposition 8.23] and R is weakly F -regular if and only if 0∗,fgER(k) = 0,
[Smi93, Proposition 7.1.2].

With the exception of Lemma 4.3 and Corollary 4.5, we continue to assume that (R,m, k)
is an excellent normal Cohen-Macaulay domain of Krull dimension 4 and is the homomorphic
image of a regular local ring S so that the results of Section 3 are applicable. We fix the
characteristic of R to be of prime characteristic p > 0.

The following lemma is inspired by the methodology of Williams and MacCrimmon,
[Wil95, Mac96]. The lemma is well-known by experts, can be pieced together by work
of the first author in [Abe02], and we refer the reader to [PT18, Lemma 6.7] for a more
general statement.

Lemma 4.1. Suppose that (R,m, k) is a local normal Cohen-Macaulay domain of prime
characteristic p >, of Krull dimension 4, and J ⊆ R an ideal of pure height 1. Let y1 ∈ J
and y2, y3, y4 parameters on R/y1R and fix e ∈ N.

(1) If y2J ⊆ aR for some a ∈ J , then for any integers N2, N3, N4 with N2 ≥ 2, we have
that

((J (pe), yN2pe

2 , yN3pe

3 , yN4pe

4 ) : y(N2−1)pe

2 )
= ((J [pe], yN2pe

2 , yN3pe

3 , yN4pe

4 ) : y(N2−1)pe

2 )
= ((J [pe], y2pe

2 , yN3pe

3 , yN4pe

d ) : yp
e

2 ).
(2) Suppose y3J

(m) ⊆ bR for some b ∈ J (m), then for any non-negative integers N2, N3, N4
with N3 ≥ 2, we have that

((J (pe), yN2pe

2 , yN3pe

3 , yN4pe

4 ) : y(N3−1)pe

3 )
⊆ ((J (pe), yN2pe

2 , y2pe

3 , yNdp
e

4 ) : ym1 y
pe

3 ).
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Theorem 4.2. Let (R,m, k) be an excellent local normal Cohen-Macaulay domain of prime
characteristic p > 0 and of Krull dimension 4. Suppose that the anticanonical algebra of R is
Noetherian on the punctured spectrum of R so that its associated graded rings have negative
a-invariant. Then

0∗,fgER(k) = 0∗ER(k).

In particular, if R is weakly F -regular then R is strongly F -regular.

Proof. Let J1 ⊂ R be a canonical ideal of R and let x1, x2, x3, x4 and m be as in the statement
of Theorem 3.6. Identify the injective hull ER(k) as

ER(k) = lim−→

(
R

(xt−1
1 J1, xt2, x

t
3, x

t
4)
·x1x2x3x4−−−−−→ R

(xt1J1, x
t+1
2 , xt+1

3 , xt+1
4 )

)
.

Suppose that η = [r + (xt−1
1 J1, x

t
2, x

t
3, x

t
4)] ∈ 0∗ER(k). Equivalently, if c ∈ R is a test element

then for all e ∈ N there exists an integer s so that
crp

e(x1x2x3x4)spe ∈ (xt+s−1
1 J1, x

t+s
2 , xt+s3 , xt+s4 )[pe].

The element x1 is regular on R/(x2, x3, x4) and therefore
crp

e(x2x3x4)spe ∈ (xt−1
1 J1, x

t+s
2 , xt+s3 , xt+s4 )[pe] = (J, xt+s2 , xt+s3 , xt+s4 )[pe].

where J = xt−1
1 J1. Multiplying by (x2x3x4)pe(ts−(t+s)) we find that

crp
e(xt2xt3xt4)(s−1)pe ∈ (J, xts2 , xts3 , xts4 )[pe].

Let y2, y3, y4 denote the parameter sequence xt2, xt3, xt4 so that
crp

e(y2y3y4)(s−1)pe ∈ (J, ys2, ys3, ys4)[pe].

Observe that pe ≥ m(bpe

m
c−1)+1 and hence J [pe] ⊆ J (pe) ⊆ J (mi+1) where we set i = bpe

m
c−1.

Therefore
crp

e(y2y3y4)(s−1)pe ∈ (J (mi+1), ysp
e

2 , ysp
e

3 , ysp
e

4 ).(4.1)
Let ` be the integer depending on i described in Theorem 3.6. Theorem 3.6 and Lemma 2.2

tell us that for each integer i that there exists an integer ` so that
lcb3(y`2, y`3, y4;R/J (mi+1)

1 ) ≤ i+ 1.
Because J = xt−1

1 J1 we have that for each integer i there is a short exact sequence

0→ R

J
(mi+1)
1

·x(t−1)(mi+1)
1−−−−−−−→ R

J (mi+1) →
R

x
(t−1)(mi+1)
1 R

→ 0.

The sequence y`2, y`3, y4 is a regular sequence on R/x
(t−1)(mi+1)
1 R. By (2) of Proposition 2.5

we have that
lcb3(y`2, y`3, y4;R/J (mi+1)

1 ) = lcb3(y`2, y`3, y4;R/xt−1
1 J

(mi+1)
1 ) ≤ i+ 1.(4.2)

We multiply the containment (4.1) by (y2y3)(`−1)spe and notice that
crp

e(y2y3y4)(s−1)pe(y2y3)(`−1)spe = crp
e(y2y3)(`−1)pe(y`2y`3y4)(s−1)pe

∈ (J (mi+1), y`sp
e

2 , y`sp
e

3 , ysp
e

4 ).
(4.3)
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Consider the element
ζ = [crpe(y2y3)(`−1)pe + (y`p

e

2 , y`p
e

3 , yp
e

4 )]
of the top Koszul cohomology group

H3(y`p
e

2 , y`p
e

3 , yp
e

4 ;R/J (mi+1)).
Using the notation of Section 2, the containment of (4.3) is equivalent to the assertion that

α
R/J

(mi+1);y`
2,y`

3,y4 ;pe;spe
(ζ) = 0 ∈ H3(y`sp

e

2 , y`sp
e

2 , ysp
e

4 ;R/J (mi+1)
1 ).

By (4.2) we have that
lcb3(y`2, y`3, y4;R/J (mi+1)) ≤ i+ 1 ≤ pe − 1 + 1 = pe

and therefore
α
R/J

(mi+1);y`
2,y`

3,y4 ;pe;2pe
(ζ) = 0 ∈ H3(y`2p

e

2 , y`2p
e

2 , y2pe

4 ;R/J (mi+1)
1 ).

Equivalently, the element
crp

e(y2y3)(`−1)pe(y`2y`3y4)pe = c(ry4)pe

y
(2`−1)
2 y

(2`−1)pe

3 ∈ (J (mi+1), y2`pe

2 , y2`pe

3 , y2pe

4 ).
Recall that i = bpe

m
c− 1 and so mbpe

m
c ≥ m(pe

m
− 1) = pe−m. Hence mi+ 1 ≥ pe− (2m− 1)

and so
c(ry4)pe

y
(2`−1)pe

2 y
(2`−1)pe

3 ∈ (J (pe−(2m−1)), y2`pe

2 , y2`pe

3 , y2pe

4 ).
Pick a nonzero element z ∈ J (2m−1). Then

zc(ry4)pe

y
(2`−1)pe

2 y
(2`−1)pe

3 ∈ (J (pe), y2`pe

2 , y2`pe

3 , y2pe

4 ).
We want to utilize Lemma 4.1 to simplify the above containment. Recall that J = xt−1

1 J1,
y2 = xt2, y3 = xt3, x2J1 ⊆ a2R for some a2 ∈ J1, and x3J

(m)
1 ⊆ a3R for some a3 ∈ J

(m)
1 .

Then y2J ⊆ xt−1
1 a2R, xt−1

1 a2 ∈ J , y3J
(m) ⊆ x

(t−1)m
1 a3R, and x

(t−1)m
1 a3 ∈ J (m). Moreover,

y1 = xt1 ∈ J and y2, y3, y4 is a parameter sequence on R/y1R. Therefore we can apply (2) of
Lemma 4.1 and conclude that

ym1 zc(ry3y4)pe

y
(2`−1)pe

2 ∈ (J (pe), y2`pe

2 , y2pe

3 , y2pe

4 ).
By (1) of Lemma 4.1 we are then able to assert that

ym1 zc(ry2y3y4)pe ∈ (J [pe], y2pe

2 , y2pe

3 , y2pe

4 ).
The element ym1 zc does not depend on e. Therefore

ry2y3y4 ∈ (J, y2
2, y

2
3, y

2
4)∗

and hence, as an element of ER(k), η = [ry2y3y4 + (J, y2
2, y

2
3, y

2
4)] belongs to 0∗,fgER(k). �

To utilize Theorem 4.2 and prove Theorem A we must observe that the a-invariant of the
associated graded rings of the anticanonical algebra is negative whenever the ambient ring
is strongly F -regular and the anticanonical algebra is Noetherian.

Lemma 4.3. Let (R,m, k) be an excellent strongly F -regular ring of prime characteristic
p > 0 and Krull dimension d ≥ 2. Suppose that I ⊆ R is an ideal of pure height 1 such that
IN = I(N) for all N . Then the associated graded ring of I has negative a-invariant.
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Proof. If `(I) = 1 then I is principal and H1
R[It]+(GrI(R)) = 0. So we may assume that

2 ≤ `(I) ≤ d. We first observe that ai(R[It]) < 0 for all 2 ≤ i ≤ d. Because IN = I(N)

for all N we have that S := R[It] is a strongly F -regular graded R-algebra by [CEMS18b,
Lemma 3.1], see also [Wat94, Theorem 0.1] and [MPST19, Main Theorem]. The coho-
mology groups H i

S+(S) are only supported in finitely many positive degrees. Indeed, let
X = Proj(S) so that H i

S+(S) ∼= H i−1(X,OX) for all i ≥ 2, see [ILL+07, Theorem 12.41],
and therefore [H i

S+(S)]N = H i−1(X,OX(N)) = 0 for all N � 0 by Serre vanishing, [Har77,
Theorem 5.2]. It follows that there exists a homogeneous positive degree element c ∈ S such
that c[H i

S+(S)]≥0 = 0. Because S is strongly F -regular the S-linear maps S ·F e
∗ c−−→ F e

∗S are
pure for all e � 0. Therefore the eth Frobneius action on H i

S+(S) followed by multiplying
by c, which is the map realized by tensoring the pure map S

·F e
∗ c−−→ F e

∗S with H i
S+(S), are

injective. But the eth Frobenius action of H i
S+(S) maps elements of degree n to elements

of degree npe. Furthermore, c was chosen to annihilate elements of non-negative degree and
therefore H i

S+(S) can only be supported in negative degree.
The ring S = R[It] is Cohen-Macaulay and therefore ad(grI(R)) < 0 by [Hoa93, Theo-

rem 3.1]. By [Tru98, Theorem 3.1 (ii)] we have that ai(grI(R)) = ai(S) whenever ai(grI(R)) ≥
ai+1(grI(R)). An easy descending induction argument now tells us that ai(grI(R)) < 0 for
all 2 ≤ i ≤ d and this completes the proof of the theorem. �

Corollary 4.4. Let R be an excellent 4-dimensional weakly F -regular ring of prime charac-
teristic p > 0. If the anticanonical algebra of R is Noetherian on the punctured spectrum of
R then R is strongly F -regular.
Proof. It is well known that the properties of being weakly F -regular and strongly F -regular
can be checked at localizations at the maximal ideals of R, see [HH90, Corollary 4.15]. Thus
we may assume R = (R,m, k) is local. The properties of weakly F -regular and strongly
F -regular for a local ring can be checked after completion. In which case, the property of
being weakly F -regular is equivalent to 0∗,fgER(k) being 0 and the property of being strongly
F -regular is equivalent is 0∗ER(k) being 0.

Using gamma constructions with respect to a choice of coefficient field, we may assume R
is F -finite, see [HH94a, Section 6 and Theorem 7.24] and [Has10, Corollary 3.31]. Every com-
plete local weakly F -regular ring is a normal Cohen-Macaulay domain by [HH90, Lemma 5.9
and Theorem 4.9]. Every weakly F -regular ring is a splinter, [HH94b, Corollary 5.23]. The
property of being a splinter localizes. Therefore R is strongly F -regular on the punctured
spectrum of R by [CEMS18a, Corollary 5.9]. Lemma 4.3 tells us the anticanonical algebra of
R is such that its associated graded ring has negative a-invariant on the punctured spectrum
of R and therefore R is strongly F -regular by Theorem 4.2. �

Corollary 4.5. Let R be a 4-dimensional normal Cohen-Macaulay domain of prime char-
acteristic p. Suppose that either

(1) R is finitely generated over a field of prime characteristic p > 5 with infinite tran-
scendence degree over Fp and is weakly F -regular;

(2) R is essentially of finite type over a field of prime characteristic p > 5 and is F -
regular.
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Then R is strongly F -regular.

Proof. Every weakly F -regular ring that is finitely generated over a field of infinite tran-
scendence degree over Fp is F -regular by [HH94a, Theorem 8.1]. Thus it suffices to prove
statement (2) only.

As in the proof of Corollary 4.4, we may assume R = (R,m, k) is local and we can use
gamma constructions to reduce to the scenario that R is F -finite. The ring R is strongly
F -regular at non-maximal points by [Wil95, Main Result]. By [SS10, Corollary 6.9], if P is
a nonmaximal prime ideal of R then there exists an effective boundary divisor ∆ such that
(Spec(RP ),∆) is globally F -regular (or just F -regular since Spec(RP ) is affine) and therefore
has KLT singularities by [HW02, Theorem 3.3]. By [DW19, Corollary 1.12] the anticanonical
algebra of RP is Noetherian and therefore R is strongly F -regular by Corollary 4.4. �
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